3D bin packing using NSGA-II and Heuristic Decoder

Hamzeh Alzweri'
Computer Science and
Engineering
Michigan State University
East Lansing, MI, US
alzwerih@msu.edu

ABSTRACT

In this paper we are utilizing NSGA-II and the difference process
described in [5] and [2], respectively, to solve the 3D bin packing
problem. We extend the classical problem objective of saving
space and add one more objective that we call priority penalty.
This objective is regarding the sort of the items in terms of
delivery priority, whichever item that is to be delivered first needs
to be packed at the front (beginning) of the container. We use a
heuristic decoder to handle all solution feasibility issues related to
box placement, e.g boxes overlapping each other, boxes
overflowing the container, etc. We show the results we got using
the two objective results and visualizations of the phenomes
obtained (the actual packed solution).

KEYWORDS
3D bin packing, multi objective optimization, NSGA-II, empty
maximal spaces, heuristic decoder.

Introduction

3D bin packing is a classic NP-hard problem, the goal is to place
the boxes inside containers while making sure the placement
saves as much space as possible. To save space, the specified box
should be packed in as few bins or containers as possible, see
figure 1. In this project, we will add another goal to the
space-saving object. Sort the boxes according to their packing
priority (the first box removed from the container). We decided to
solve this problem using a heuristic decoder, the reason is to move
the feasibility and complexity issues of this problem into the
objective evaluation. So, now we can use sequence operators like
two point crossover and shuffle indices mutation without
worrying about the feasibility of the produced solutions. If we use
the GA to change the boxes' locations directly then it's difficult to
produce feasible solutions as the initialization and operators need
to account for boxes not to overlap with each other in the
container space. This makes the problem really complex, and the
search space will be difficult to explore properly.

Sinuo Fan
Electrical and Computer Engineer
Michigan State University
East Lansing, MI, US
fansinuo@msu.edu

(M

Empty Maximal Spaces

The maximum empty space is the empty space of the cube that is
not included in other EMSs and basically indicates where to place
the box. The maximum empty slot is created or updated each time
a new box is placed, we keep track of a list of all EMSs
throughout the decoding process to find empty locations to place
the boxes.. When the placed box intersects the EMS, it will be
used to create and delete 6 new EMSs. EMS is created in front of,
behind, above, below, left, and right at the intersection of the
placed box and EMS. After creating a new EMS, some of these
EMSs may be infeasible as follows:

1- Infinitely thin EMS : An ems has one of it’s dimensions equal
to 0, e.g. EMS that is created behind a box when its back is
touching another box or the container. See figure 2.

2- An EMS inscribed within another EMS: this is considered a
duplicated EMS since I already have an EMS that indicates that
the particular space at hand is empty, having another EMS inside
of that EMS to tell me that the space is empty there again is
redundant so we discard that EMS.

mailto:alzwerih@msu.edu
mailto:fansinuo@msu.edu

3D bin packing problem in multiple levels using the Genetic
Algorithm

packed boxes

(2)

Methodology

We will use the NSGA-II to find the order and orientation of the
boxes we have, whereas the heuristic decoder is used to translate
this genome (order and orientations) into a phenome (packed
solution) in order to evaluate the individual during the NSGA-II..
We move feasibility issues of the problem to a heuristic decoder
that will handle the box placement process, this decoder should
take as input an individual and return a packed solution (list of
containers along with the boxes packed inside of them).

The decoder consists of the following :

1- Placement heuristic function: Try fitting the box in each EMS
to determine which EMSs are feasible for this box.

2- Chooses the EMS according to the Back-Bottom-Left (BBL)
heuristic rule (choose the spot with the lowest Z, Y, X coordinates
in order) and places packs the box in that location.

3- Empty Maximal Space creation function: After packing a box
into a location, this function checks which existing EMSs intersect
with the packed box in order to create the new EMSs.

4- Empty Maximal Space update function: Because some created
empty spaces will have infinite thinness or might be totally
inscribed within other EMSs, this function is meant to find such
EMSs and remove them as they are unusable and only add
overhead to the program in the next iterations. We also make sure
to remove EMSs that do not fit any of the remaining boxes, i.e
they have less volume than any of the remaining boxes or their
dimensions don’t fit any of the remaining boxes. We apply those
two checks in sequence as in [6], the removal of these EMSs
reduces computational complexity as these EMSs won’t be used
in any future box placement.

Initialization

First, initialize a set of boxes with random dimensions, priorities,
weights, and orientations, see figure 3. Create an initial container
to use for packing the boxes. The decoder handles opening
additional containers when space is needed. Each individual
consists of two parts, the first part is the order in which the boxes

are packed, and the second part is the orientation of each box. For
example: [3,9,8,10,7,4,6,5,1,2,1,1,1,0,0,0,0,1,2,2, 1] Here, the first
10 digits are the ID of each box, and the last 10 digits (0, 1, 2) are
the arrangement of each box on the left side of the chromosome.
The 0 direction means the original direction (no direction) in
which the box was created, 1 means the front and back are up and
down, and 2 means the sides are up and down.

3)

Penalty Evaluation

We have created the following merit functions, all of which need
to be minimized:

Space Penalty: This function performs really well for the 3D bin
packing problem according to [6]. NB means the number of
containers, BV is the volume of the last container's box, CV is the
volume of the last container. This function represents how well
the solution is using the available space (individually). Check only
the last container because it contains enough information. This is
because if it is better to pack the boxes using the previous
container, the last container will receive less boxes. Use NB parts
to punish the solution with more containers. If you use only the
BV / CV of the last container, you cannot distinguish between a
solution with two containers and a solution with three containers,
see figure 4.

BV
SP— NB
T oV

P
Z =0 | |
N
(%)

Priority Penality, figure 5, PP is the priority penalty, P is the
priority, N is the number of boxes, and I is the index (order) of the
person's boxes. This function shows how wrong the priority is.
Therefore, there are 50 boxes, with the 50th priority (highest
priority) box first. Get 50-0/50 = 1.00. This is the maximum
penalty, which is a percentage of how far the boxing order is from

4)

PP =

3D bin packing problem in multiple levels using the Genetic
Algorithm

the correct position. We sum this penalty over every box in the
chromosome and after that we divide them by N again, and this
way, instead of getting some arbitrary number, we get a
percentage that represents how off mark the individual is.

Overview

We first Create a set of N boxes with random dimensions,
weights, priorities, orientations and IDs. These boxes are to be
sorted by the algorithm in containers. Then we initialize the
population using the created boxes. Every time we need to
evaluate an individual, we need to send it through the decoder first
to get our phenome which is fed into our objectives along with the
individual. The decoder opens a container and starts the packing
process, a placement heuristic is applied to every box in order to
determine where to pack it. Then, an EMS creation function is
run, this function checks the intersection between the placed box
and the EMSs that we already have in order to create new EMSs.
After that an update EMSs function is run in order to remove the
invalid EMSs we talked about earlier. Another thing that happens
in this function is that we also remove the EMSs that don’t fit any
of the remaining boxes by checking their volume and dimensions.
Discarding them saves computational time as they won’t be
utilized in the future, see [6] for more info. Now we check if there
are any remaining unpacked boxes, if there are then we check if
we already looped over all boxes in an attempt to place them for
this container. If that is the case, then we save this container in our
containers list and open up a new container and redo the packing
process. If there are no boxes remaining then we exit and return
the resulting containers, if there are boxes remaining but we did
not attempt all the boxes yet then we simply move to the next box.
After we get the containers from the decoder we feed them into
the evaluation function which then returns the penalties of the
particular individual at hand. We now have the fitness and can
proceed with the NSGA-II as follows:

- Assign crowding distance to each individual.

- Start the evolution by applying a tournament selection
(R, CD) to create an offspring.

- Use the offspring to create children through crossover
and mutation. To do that, split the individual into two
chromosomes, first half is the sequence of boxes’ IDs
and the second half is the orientation bits (rotations).
The reason we do this is we apply different operators to
each half of the chromosome since they are of different
representations.

- Apply Cut and Crossfill crossover and Shuftle indices
mutation to the IDs sequence.

- Apply two point crossover and bit flip mutation to the

sequence of orientations.

- After creation of children is done, we send them to the
decoder, evaluate their fitness and finally combine them

with the current population.

- Now individuals are sorted according to the pareto
front, then a new population is selecting with the help of
TS(R,CD).

For every generation G we keep a reference of the best and worst
individual, we keep iterating through the process above until the
target number of generations is met. Now the algorithm will
return the list of the best and worst individuals across every
generation, along with their phenome simulations. For a simple
representation of the overview explained above refer to Appendix
1 at the end of the paper.

Pseudo-code for the decoder

1. Create a set of N boxes with random dimensions, weights,
priorities, orientations and IDs.
2. Initialize a population of size M chromosomes using the set
of boxes created in step 1.
3. Send all individuals to the heuristic decoder:
a. While there are still boxes to pack
(len(remaining_boxes) > 0):
i. Create a container with a specified width, height
and depth.
ii. Create an initial EMSs list that have an EMS with
the same dimensions as the container created in I.
iii. For BoxID in individual:

1. Get box with ID = BoxID from the
remaining_boxes pool

2. Apply rotation to the box according to its
orientation in the individual chromosome

3. Try fitting the box in each of the EMSs in
the EMSs list, combine valid EMSs in a list
valid EMSs, if valid EMSs is empty we
skip to the next box, and keep a reference
of the current box to pack it in the next
container.

4. Apply BBL heuristic selection on
valid EMSs to select an EMS to pack the
box in.

5. Pack the box in the selected EMSs from iv.

iv. Add the box to the current container.
v. Remove the packed box from the remaining_boxes
pool.
vi. For EMS in EMS list:

1. Check for intersection between placed box
and EMS

2. If there is intersection then use intersection
coordinates to create 6 new EMSs (before,

3D bin packing problem in multiple levels using the Genetic

Algorithm

3.

after, above, below, to the right and to the
left of the intersection)
Add EMSs from ii to EMSs list

vii. For EMS in EMS list:

1.

If EMS volume is not bigger than at least 1
remaining box volume, then remove EMS
If EMS dimensions do not fit at least 1
remaining box, then remove EMS

For target EMS in EMSs

if (x1>x3) and (yl >ty3) and (z1>z3) and
(x2~<x4) and (y2~<y4) and z2 ~< z4) then
EMS (x1, yl, zl) (x2, y2, z2) is inscribed
within target EMS (x3, y3, z3) (x4, y4, z4)

SO remove it.

viii. Add container to list of containers.

b. Return list of containers

Tableau
Generations Population Crossover rate
size
50 32 0.55
Mutation Rate Mutation Crossover
0.3 Shuffle indices Cut and cross fill
(for box IDs) and for box IDs and
Bit flip (for Two-point
orientations, here crossover for
if the bit is 0 it orientations.
becomes either 1
or 2 and if its 1 it
becomes either 0
or 2 and if its 2 it
becomes 0 or 1
Parents Survivor Termination
Selection Selection
Tournament Select from the Reach target
selection using pareto front using number of
Rank and Rank and generations
Crowding Distance | Crowding Distance
(NSGA-II
selection)

Results

In terms of results, we are testing the solution for every run using
3 different sets of boxes of sizes 70, 140 and 200. We show the
visualization of the phenomes (which are genomes that were
passed to the decoder) for every different run. We also run the
NSGA-II while optimizing for a single objective at a time to
check whether the good results we got when optimizing for 2
objectives are legit or not. Our plots show enough evidence that
our prioritization of fineness is successful.

In the first test, we run the algorithm using 70 boxes and the
visualizations below show the difference between the best and
worst individuals’ results. The best individual over all generations
sorted the 70 boxes into 1 container using 0.856 of its space and
with 0.30 (or 30%) off the mark priority. Whereas the worst
individual used 2 containers and was 0.37 off the mark. See
figures 6 and 7 below for the best and worst individual
respectively.

Best individual across all generations with boxes 70

(M
best individual penalties: (space 1.856, priority 0.308)

Worst individual across all generations with boxes 70

120

®
worst individual penalties: (space 2.143, priority 0.37)
The data in figure 9, 10, 11 and 12 show the Pareto graph for a
70 boxes run along with visualization of the colored individuals
on the plot, the extremes from both ends and an average
individual on the pareto front respectively.

3D bin packing problem in multiple levels using the Genetic
Algorithm

Pareto frintier when boxes are:70 Now we show the same results as above for 140 boxes:

Best individual across all generations with boxes 140

0.34

0.32 4

0.30

o

N

o
L

Priority Fitness

o

o

@
L

0.24

0.22

(13)

T T T T T T
185 190 195 2.00 2.05 2.10

space Fitness ©) best individual penalties: (space 2.354, priority 0.267)

Worst individual across all generations with boxes 140
the individual with best priority (blue) for pareto with boxes 70 8

(14)
(10) worst individual penalties: (space 2.41, priority 0.354)
the individual with best priorty and space (green) for pareto with boxes 70 And again, the pareto front along with the visualizations of the
target colored individuals red, blue green are figures 16, 17 and 18
respectively :

100 Pareto frintier when boxes are:140

40 0.36 °
20
0 L
0.34 4
e @
w 0.324
o L
£
i
(11) Z 030
2
=
&
the individual with best space (red) for pareto with boxes 70 0.28
0.26 ¢
° L
2.34 2.36 2.38 2.40 2.42 2.44
Space Fitness (15)

(12)

3D bin packing problem in multiple levels using the Genetic
Algorithm

the individual with best priority (blue) for pareto with boxes 140 Worst individual across all generations with boxes 200

120

100

80 o 10 10
08 08

o 75 06 06

€ 50 0.4 04

20 25 02 02

o o 00 00

10 10
2 o 08 08
° 2 100 50 o 0446 o 04, e
0 100 o 08,0 00 *© 08, 00
@ = 10 O 10 O
80

10

0
120 ©

(16) (20)
worst individual penalties: (space 3.448, priority 0.342)

the individual with best priority and space (green) for pareto with boxes 140

The pareto front and sampled individuals:

Pareto frintier when boxes are:200

0.34

0.33 4

0.32

0314

(17

the individual with best space (red) for pareto with boxes 140

Priority Fitness

o o <3

i] W

© w0 =1
L L !

0.27 A

0.26 4

T T T
331 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39

Space Fitness (21)

the individual with best priority (blue) for pareto with boxes 200

(18)

We run the algorithm for 200 boxes and show the same plots as o
above in the same order again to get: » %
205 gé
Best individual across all generations with boxes 200 200 o
02 w99,
T o M”oalo o

(22)

o0 o0

100 0.8 0.8

= g o8

= & o

5 o o

5 o %

0 0

15" o fog

O 25 100 u'ou 2 04 00 0.2 0.4

oo i 0agn !
w o 03,0 08 05, a8

(19)
best individual penalties: (space 3.32, priority 0.297)

3D bin packing problem in multiple levels using the Genetic
Algorithm

the individual with best priority and space (green) for pareto with boxes 200

10 10
100 08 08
7 06 06
50 04 04
25 02 02
0 00 0.0

10 10
5 08 08
o 0.0 (X3 00 26
25 100 002 04 002 04
50 4o 50 04,6 02 %406 02
100 o 08,4 00 08,4 00

the individual with best space (red) for pareto with boxes 200
100 0.8 08
z 5
2% o} ob
0 0.0 06 0.0 0.6
25 100 02 0.4 Y02 0.4
75 064 2 06,8 3
100 0 10 00 10 00
Scalabilit

Now to show the scalability of the algorithm we show the
objective penalties over generations for the 3 different runs of
different box sizes in figure 25 and 26.

Best individuals across generations for space penality

3.75 4
3.50 1
3.25
Z 3.00 {
e —— 70 boxes
o
:' 275 — 160 boxes
o —— 200 boxes
®
-3
¥ 2.50
2.254
2004 /\m\
0 10 20 30 40 50

Generations (25)

Best individuals across generations for priority penality

0.34 4 —— 70 boxes
—— 140 boxes
—— 200 boxes
0.324
z
s 0304
&
=
2 028 4
Qe
0.26 4
0.24 4
o 10 20 30 40 50
Generations (26)

As we can see from the figures above, the solution wa scalable for
all the box size, although it might not be apparent for the space
objective run for size of 200 boxes, the space is decreasing
slightly but the reason it is not reduced as much is that when you
increase the number of boxes you will inevitably need more space
to fit them in. This all depends on the sizes of the boxes and the
size of the container at hand, so "how good my solution is" really
relies on "how good a solution for this set of boxes can be". In
general, we say that the solution is scalable as long as it’s actually
decreasing the penalty even for small amounts.

Solutions legibility

In this test, we run the algorithm to optimize for a single objective
at a time. We do this because we want to confirm that the
solutions obtained above are reasonable, reproducible and not
obtained by coincidence.

est individual in terms of priority in each generation while training for priorit

—— 140 baxes
0.29

o
N
@

o
~

Prigrity Penality

e
I
&

[} 10 0 30 &0 50

Generations (27)
The best individuals across all generations in terms of priority.

3D bin packing problem in multiple levels using the Genetic
Algorithm

Best individual in terms of space in each generation while training for space

| —— 140 boxes
3.00

2.95

[
o
=1

r
™
]

Space Penality

-e
@
-1

o 1o 20 E 40 50

Generations
(28)
The best individuals across all generations in terms of space while
optimizing for space penalty.

As we can see from figures 27 and 28, the algorithm is still
finding good solutions for each of the objectives separately so we
can say that the algorithm will be reaching a minimum that
optimizes both the objectives everytime we run it.

Conclusion and future work

Using the NSGA-II and a heuristic decoder got reasonable results
for solving the 3D bin packing problem, and the algorithm is
scalable for an increased number of boxes.

We haven’t compared it to any bench-mark yet, so we can't give a
statement on whether it is the best or not at the moment but this is
a future consideration. We believe that the performance of this
algorithm can be further optimized by trying out different
placement heuristics instead of the Back-Bottom-Left heuristic.

In our next work, we will be considering a weight fitness function
for stabilizing the boxes in the container (making sure the boxes
are placed in a stable way so that they won’t fall off

while the containers are in-transit) by assuring the heavier boxes
are placed in the bottom and lighter boxes are placed on the top.

REFERENCES

[1] Bean, J., 1994. Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing 6, 154-160.

[2] Lai, K., Chan, J., 1997. Developing a simulated annealing algorithm for the
cutting stock problem. Computers and Industrial Engineering 32, 115-127.

[3] DEAP. (n.d.). Deap/nsga2.py at master - DEAP/deap. GitHub. Retrieved

December 7, 2021, from
[4] David Kosiur. 2001. Understanding Policy-Based Networking (2nd. ed.). Wiley,
New York, NY.

[5] J, Gongalves. M. Resende. 2013. A biased random key genetic algorithm for 2D
and 3D bin packing problems, Int. J. Production Economics 145 (2013)
500-510.

https://github.com/DEAP/deap/blob/master/examples/ga/nsga2.py

3D bin packing problem in multiple levels using the Genetic

Algorithm

Appendix 1

NSGA-II and the Heuristic Decoder workflow

Boxes
initalization

Population
initalization

Yes
Return best

individuals

Current
population

A

No

Target generation
reached?

Open a new
container

IAdd container to|
list of used
containers

Apply placement

‘l Empty maximal

heuristic to next
box

A

No

Placement
attempted on all
boxes?

All boxes
packed ?

Yes

| space creation

Empty maximal
space update

Empty maximal
space update

NSGA-Il |«

Evaluate)

decoder

h 4

Return

individual |

containers list

